calculoineran
sábado, 29 de enero de 2011
mas sobre teoria de conjuntos
aqui encontrara algo màs sobre la teoria de conjuntos. leer mashttp://www.cibermatex.com/spip.php?article3076
sigue definiciones
Conjunto Vacío:
Se trata del conjunto que no tiene elementos, o que estos son inexistentes, ejemplos:
D = {x/x son perros con alas}
E = { }
Conjunto Universal o Referencial:
Se llama así al conjunto conformado por los miembros o elementos de todos los elementos que hacen parte de la caracterización.
Por ejemplo, dados:
A = {1, 3, 5, 7} B = {2, 3, 4} C = { 6, 7, 8, 9}
El conjunto universal o referencia es:
U ={1, 2, 3, 4, 5, 6, 7, 8, 9}
Conjuntos disyuntos o disjuntos
Son aquellos conjuntos que no tienen ningún miembro o elemento en común. Otra forma de expresarlos es decir que la intersección de dos o más conjuntos disyuntos o disjuntos es el conjunto vacío
Por ejemplo los conjuntos B y C mencionados como ejemplos del conjunto universal son conjuntos disyuntos pues no tienen ningún miembro en común
Se trata del conjunto que no tiene elementos, o que estos son inexistentes, ejemplos:
D = {x/x son perros con alas}
E = { }
Conjunto Universal o Referencial:
Se llama así al conjunto conformado por los miembros o elementos de todos los elementos que hacen parte de la caracterización.
Por ejemplo, dados:
A = {1, 3, 5, 7} B = {2, 3, 4} C = { 6, 7, 8, 9}
El conjunto universal o referencia es:
U ={1, 2, 3, 4, 5, 6, 7, 8, 9}
Conjuntos disyuntos o disjuntos
Son aquellos conjuntos que no tienen ningún miembro o elemento en común. Otra forma de expresarlos es decir que la intersección de dos o más conjuntos disyuntos o disjuntos es el conjunto vacío
Por ejemplo los conjuntos B y C mencionados como ejemplos del conjunto universal son conjuntos disyuntos pues no tienen ningún miembro en común
definicion de las clases de conjuntos
Conjunto Finito:
Cuando los miembros o elementos del conjunto se pueden contar o enumerar.
Por ejemplo el conjunto de las letras del alfabeto es un conjunto finito que expresado por comprensión es:
A = {x/x son las letras del alfabeto castellano}
Conjunto Infinito:
Cuando los elementos o miembros no se pueden enumerar o contar, se considera como conjunto infinito.
Un ejemplo de conjunto infinito son las estrellas del cielo. Los conjuntos infinitos siempre deberán determinarse por comprensión; para el ejemplo:
B = {x/x son las estrellas del universo}
Conjunto Unitario:
Es el conjunto que tiene un solo miembro o elemento. Un ejemplo:
C = {luna}
Cuando los miembros o elementos del conjunto se pueden contar o enumerar.
Por ejemplo el conjunto de las letras del alfabeto es un conjunto finito que expresado por comprensión es:
A = {x/x son las letras del alfabeto castellano}
Conjunto Infinito:
Cuando los elementos o miembros no se pueden enumerar o contar, se considera como conjunto infinito.
Un ejemplo de conjunto infinito son las estrellas del cielo. Los conjuntos infinitos siempre deberán determinarse por comprensión; para el ejemplo:
B = {x/x son las estrellas del universo}
Conjunto Unitario:
Es el conjunto que tiene un solo miembro o elemento. Un ejemplo:
C = {luna}
clases de conjuntos
Clases de conjuntos
La clasificación de los conjuntos está fundamentada en el análisis de sus elementos o miembros, por ejemplo si no tiene miembros, el conjunto es vacío, si sus miembros son innumerables infinito, etc.
La clases de conjuntos son:
1.Conjunto finito
2.Conjunto infinito
3.Conjunto unitario
4.Conjunto vacío
5.Conjunto universal o referencial
6.Conjuntos disjuntos o disyuntos
La clasificación de los conjuntos está fundamentada en el análisis de sus elementos o miembros, por ejemplo si no tiene miembros, el conjunto es vacío, si sus miembros son innumerables infinito, etc.
La clases de conjuntos son:
1.Conjunto finito
2.Conjunto infinito
3.Conjunto unitario
4.Conjunto vacío
5.Conjunto universal o referencial
6.Conjuntos disjuntos o disyuntos
notacion de conjuntos
Notación
Usualmente los conjuntos se representan con una letra mayúscula: A, B, K,...
Llamaremos elemento, a cada uno de los objetos que forman parte de un conjunto, estos elementos tienen carácter individual, tienen cualidades que nos permiten diferenciarlos, y cada uno de ellos es único, no habiendo elementos duplicados o repetidos. Los representaremos con una letra minúscula: a, b, k,...
De esta manera, si es un conjunto, y todos sus elementos, es común escribir:
para definir a tal conjunto A. Esta notación empleada para definir al conjunto A se llama notación por extensión
Usualmente los conjuntos se representan con una letra mayúscula: A, B, K,...
Llamaremos elemento, a cada uno de los objetos que forman parte de un conjunto, estos elementos tienen carácter individual, tienen cualidades que nos permiten diferenciarlos, y cada uno de ellos es único, no habiendo elementos duplicados o repetidos. Los representaremos con una letra minúscula: a, b, k,...
De esta manera, si es un conjunto, y todos sus elementos, es común escribir:
para definir a tal conjunto A. Esta notación empleada para definir al conjunto A se llama notación por extensión
Suscribirse a:
Entradas (Atom)